
The Power of Interaction in Local Differential Privacy

Matthew Joseph∗

January 28, 2020

Abstract

A communication protocol is locally differentially private if the communicated messages
reveal little about the data of participants. We survey two papers that show interactive local
privacy can be much more powerful than noninteractive local privacy. First, Kasiviswanathan,
Lee, Nissim, Raskhodnikova, and Smith [19] prove a general equivalence between locally private
learning and statistical query (SQ) learning. They use this equivalence to give a new concept
class, masked parity, which is much harder to learn under noninteractive local privacy than
interactive local privacy. However, a drawback of this result is that masked parity is a concept
class constructed exclusively for separation. Daniely and Feldman [7] extend this line of work by
connecting a concept class’ noninteractive SQ learnability with its margin complexity. This is
useful because past work has shown that the margin complexity of decision lists is exponential
in the dimension of the example space. In conjunction with the local-SQ equivalence given
by Kasiviswanathan et al. [19], this yields another separation: noninteractive locally private
decision list learning is much harder than interactive locally private decision list learning.

∗University of Pennsylvania CIS Department. This document submitted to fulfill the WPE II Exam requirement.

1

1 Introduction

Differential privacy [11] is a formal property of algorithms that process data. A randomized algo-
rithm that maps databases to output distributions is differentially private if similar inputs yield
similar output distributions. This clean definition, along with robust mathematical guarantees,
has driven a now-large body of academic work [12, 24] as well as real-world industrial [1, 3, 8, 15]
and governmental [14] deployments.

Nearly all work on differential privacy studies one of two models. In central differential pri-
vacy [11], the algorithm enjoys “central” access to the raw, unnoised database and may perform
arbitrary computations on this data. The only constraint is that the algorithm’s eventual public
output must satisfy differential privacy.

We focus on the stricter local model of differential privacy. Local differential privacy [11, 2, 19]
places additional restrictions on the data processing pipeline. Locally differentially private
algorithms no longer receive trusted central access to raw data. Data instead remains distributed
on users’ devices, and learning takes place through a public communication with users. Users
“locally” add randomness to their communications to introduce uncertainty about their inputs,
and the transcript of communication is now the differentially private object. Unlike the central
model, the local model folds privacy into the learning process itself.

Relative to conventional (central) differential privacy, local differential privacy has both
strengths and weaknesses. Its foremost strength is the privacy it guarantees to users. Because
users add their own randomness to their communications, they do not require a trusted central
analyst or even secure communication channels. Unfortunately, strong privacy cuts both ways:
more noise typically means more error. For example, an ε-centrally private algorithm can
compute a sum of n bits to additive error O

(
1
ε

)
, but for constant ε, no ε-locally private algorithm

can achieve o(
√
n) error [6].

Nonetheless, strong privacy guarantees have made local differential privacy a promising
model of private computation. In fact, most of the aforementioned industrial applications em-
ploy the local model. It is therefore important to understand what the local model can and
cannot do. In this survey, we focus on the role of interactivity in local differential privacy.

Interactivity is an important protocol property for two reasons. First, as demonstrated by
communication problems like pointer-chasing [21], it may be possible to trade more rounds
of communication for much less communication overall. This suggests that interactive locally
private protocols may obtain similar savings, for example in sample complexity.

However, interaction also incurs many forms of overhead. Because users must now receive as
well as send messages, interaction introduces scalability constraints; because interaction requires
multiple rounds, running time must grow as well; and because users now coordinate interaction
with one another, network latency and liveness constraints become nontrivial problems [23].
Motivated by these complicating factors, we would like to allocate the resources for interaction
precisely to the problems where they are necessary. The focus of this survey is to cover work
by Kasiviswanathan et al. [19] and Daniely and Feldman [7] identifying such problems.

First, we present work by Kasiviswanathan et al. [19] showing that locally private learning
is — in a formal sense that we will define later — equivalent to statistical query (SQ) learning
in an interaction-preserving way (Section 3). Using this result, it only remains to find problems
that are hard (in terms of necessary and sufficient sample complexity) for noninteractive SQ
learners but easy for interactive SQ learners. In Section 4, we show this is the case for the
concept class of masked parity.

Next, we turn to more general results by Daniely and Feldman [7]. Their connection between
margin complexity and SQ learnability appears in Section 5. In conjunction with past work
on (interactive) SQ learning decision lists and the margin complexity of decision lists, this
leads to our second separation: under local privacy, decision list learning is much easier for
interactive protocols than noninteractive ones (Section 6). Related work and preliminaries
appear in Sections 1.1 and 2, respectively.

2

1.1 Related Work

Local differential privacy’s history in part predates that of differential privacy. Although it
did not define local privacy in general, Warner’s randomized response [26] is an early example
of a locally differentially private protocol. Dwork, McSherry, Nissim, and Smith [11], Beimel,
Nissim, and Omra [2], and Kasiviswanathan et al. [19] all helped to formalize the idea behind
local differential privacy into the definition given in Section 2.

We briefly describe other work studying interaction in local privacy. Duchi et al. [10] first
distinguished between sequential and full interactivity. They also give information-theoretic
lower bounds for sequentially interactive protocols. However, these results have only shown
that many noninteractive protocols are actually optimal even with regard to the class of sequen-
tially interactive protocols. In particular, Duchi et al. [10] do not give any separations between
noninteractive and (sequentially) interactive local privacy.

We now turn to work on fully interactive local privacy. Duchi and Rogers [9] showed how to
extend the lower bounds of Duchi et al. [10] to fully interactive protocols but, again, obtained no
separations between different interactive models. Joseph, Mao, Neel, and Roth [16] proved the
first separation between approximate fully interactive local privacy and central privacy for the
problem of simple hypothesis testing They also showed how to convert fully interactive locally
private protocols to sequential ones and gave a polynomial sample complexity separation for
sequential and full interaction. Follow-up work [17] extended this to an exponential separation
and also gave a general exponential separation between k and k + 1-round sequential protocols
for any k ∈ N, albeit for a highly specific pointer-chasing problem.

In the context of the preceding work delineating noninteraction, sequential interaction, and
full interaction, we emphasize that this paper focuses on the relative power of noninteraction
and sequential interaction. Accordingly, we shorthand these as noninteraction and interaction.

The work of Smith et al. [23] is close to, but nonetheless different from, the focus of this
survey. Smith et al. [23] show that certain protocols based on neighborhood oracles must use
interaction to solve certain optimization problems in a number of samples polynomial in the
problem parameters. In particular, this separation extends to neighborhood oracle-based locally
private protocols as well. However, this result is qualitatively different from the results we study.
This is because the neighborhood oracle, not local privacy, is the main constraint driving the
result. The separation holds because each user only has information about an infinitesimal
region around their point. This need not be true in general.

Finally, we briefly discuss related work on statistical query (SQ) learning. As noted by Ka-
siviswanathan et al. [19], Blum, Furst, Jackson, Kearns, Mansour, and Rudich [4] showed that
noninteractive and interactive distribution-dependent weak SQ learners are equivalent. This
explains why the separations we cover do not follow from the work of Blum et al. [4]: Ka-
siviswanathan et al. [19] study distribution-dependent strong SQ learners, while Daniely and
Feldman [7] study distribution-independent weak SQ learners.

2 Preliminaries for Local Privacy, SQ Learning, and PAC
Learning

We start with basic definitions for local differential privacy and its different models of interaction
before defining the SQ learning and PAC learning frameworks. We will define both the local and
SQ models in terms of transcripts and protocols, but the exact model in question at any given
time should be clear from context (or explicitly specified). In both models, there is a (possibly
unknown) distribution D over unlabelled examples, and a labeling function denoted here by f .
Both local and SQ learners will have restricted forms of access to the behavior of f on examples
drawn from D.

3

2.1 Differential Privacy

A randomized algorithm A satisfies central differential privacy if it maps raw databases to
outcomes such that the distribution over outcomes is relatively insensitive to small changes in
the database. This insensitivity, which hides the presence or absence of any one user, provides
the privacy guarantee.

Definition 1 (Central differential privacy [11]). Given data domain X and two databases
D,D′ ∈ Xn for some n ∈ N, D and D′ are neighbors if they differ in ≤ 1 element. Given
algorithm A : Xn → Y , A is (ε, δ)-differentially private if for all subsets S ⊂ Y ,

PA [A(D) ∈ S] ≤ eεPA [A(D′) ∈ S] + δ.

For this work, it is important to note that centrally private algorithms enjoy trusted (central)
access to the entire raw database. In particular, they may perform arbitrary computations on
raw data before releasing a private output.

A locally differentially private algorithm satisfies a still more restrictive privacy guarantee1.
A locally private algorithm is a public interaction between users, each of whom privately holds
a single data element. To ensure privacy, users only contribute to this interaction through
randomizers.

Definition 2. An (ε, δ)-randomizer R is an (ε, δ)-differentially private function taking a single
data point as input. Here, a user’s input data will typically consist of a labeled point (x, f(x)) ∈
X × {−1, 1}.

Because communication occurs only through randomizers, the overall record of public inter-
action is private. We more formally study this interaction in terms of its transcript.

Definition 3. A transcript π is a vector of 4-tuples (Rt, εt, δt, yt) respectively indicating the
randomizer, privacy parameters, and output produced at each time t.

We can then view a locally private protocol as a coordinating mechanism that takes a
transcript and selects a randomizer for the next user.

Definition 4. Let Sπ denote the collection of transcripts and SR the collection of randomizers.
Then a protocol A is a function A : Sπ → SR ∪ {⊥} mapping transcripts to randomizers or
halting (⊥).

A locally private protocol generally includes some post-processing of the transcript to gener-
ate some final output. Since this post-processing is still a function of the transcript, we abstract
it away and focus only on the transcript. Next, we distinguish between different notions of
interactivity for locally private protocols.

Definition 5. If locally private protocol A makes all randomizer assignments before receiving
any outputs, then A is noninteractive. If A makes these assignments adaptively, but each user
is queried at most once, then A is sequentially interactive [10]. Note that in all cases the
randomizer assignment is independent of the data of the user who will apply the randomizer to
their data.

The most general model of local privacy allows full interactivity : users may produce arbitrar-
ily many outputs in arbitrary sequences. In particular, the protocol may solicit multiple outputs
from a user across time. We focus on the relative power of noninteractive and sequentially inter-
active local privacy, so we simply shorthand these terms noninteractive and interactive. Finally,
we define local differential privacy.

Definition 6. A protocol A is (ε, δ)-locally differentially private if its transcript is an (ε, δ)-
differentially private function of the user data. If δ = 0, we say A is ε-locally differentially
private.

In particular, a sequentially interactive protocol is (ε, δ)-locally differentially private if and
only if every output is produced by an (ε, δ)-randomizer.

1Our presentation of local differential privacy imitates that given by Joseph et al. [16].

4

2.2 Statistical Query Learning

Kearns [20] first introduced statistical query (SQ) learning, but we adopt the definitions and
notation used by Kasiviswanathan et al. [19] and Daniely and Feldman [7]. In SQ learning, a
learner receives access to an SQ oracle. The learner passes the oracle a function φ and tolerance
τ , and the SQ oracle returns a τ -accurate approximation of the expected value of φ over the
randomness of examples drawn from D and labeled by f . This formalizes the notion of a coarse
population-level learning2. We start by defining an SQ oracle.

Definition 7 ([20, 19]). Let D be a distribution over data domain X. An SQ oracle SQD,f takes
as input a function φ : X × {−1, 1} → [−1, 1] on labeled examples and a tolerance parameter
τ ∈ (0, 1) and computes an output SQD,f (φ, τ) = v such that

|v − Ex∼D [φ(x, f(x))] | ≤ τ.

We also place restrictions on φ and τ : it must be possible to evaluate φ in time polynomial in
the learning problem parameters, and τ must be no smaller than an inverse polynomial in the
problem parameters.

An SQ oracle thus approximates the expected output of f when examples are drawn from
D and labeled by f , up to an additive error τ . Where a locally private algorithm learns by
communicating with individual users, an SQ algorithm learns through calls to an SQ oracle.

Definition 8. An SQ transcript λ is a vector of 3-tuples (φt, τt, vt) of the function, tolerance,
and output produced at each time t. Let Sλ denote the collection of SQ transcripts and Sφ the
collection of input functions. Then an SQ algorithm A is a function A : Sλ → (Sφ×(0, 1))∪{⊥}
mapping SQ transcripts to SQ oracle calls or halting (⊥).

We also define notions of interactivity that directly parallel those of the local model.

Definition 9. If SQ algorithm A decides all SQ oracle calls before receiving any answers, then
A is noninteractive. Otherwise, A is interactive.

2.3 PAC Learning

In probably approximately correct (PAC) learning problems, a learner receives examples from
a domain X labeled by points in Y , and the learner’s goal is to use these examples to learn
a concept labeling the points of X. The concept must be probably (over the distribution of
labeled points received during learning) approximately correct (labels future points with low
error). Valiant [25] first introduced PAC learning, but we imitate the definitions given by
Daniely and Feldman [7].

Definition 10. Let X be a domain and let C be a class of boolean functions over X. Algorithm
A PAC learns C with error α and failure probability β if, for every distribution D over X and
f ∈ C, given access (via oracle or samples) to the input distribution over samples (x, f(x)) for
x ∼ D, with probability ≥ 1 − β over oracle calls or samples and A, A outputs a function h
such that Px∼D [f(x) 6= h(x)] ≤ α. If A has running time poly(log(|X|), log(|C|), 1/ε) then A is
efficient.

We will show that certain PAC learning problems are much harder for noninteractive al-
gorithms than interactive ones. Along the way, we distinguish between PAC learners that are
distribution-independent (as given in Definition 10) and distribution-dependent (require exam-
ples drawn from a specific distribution). We also distinguish between weak learners (which may
have error arbitrarily close to 1

2) and strong learners (which obtain error ≤ α for any α > 0
using poly(1/α) samples or oracle calls). The separation from Kasiviswanathan et al. [19] is for
distribution-dependent strong learning, while the separation from Daniely and Feldman [7] is
for distribution-independent weak learning.

2By the same token, a key result of Kearns [20] is that SQ learning implies noise-tolerant learning, where some
fraction of the labels are corrupted

5

3 Local Privacy and SQ Learning

Our first step in separating noninteractive and interactive local privacy is a connection between
local privacy and SQ learning. As the eventual goal is to use SQ lower bounds to prove local
privacy lower bounds, it is enough to show that SQ learners can simulate locally private learners
in a way that preserves (non)interactivity. Instead, Kasiviswanathan et al. [19] prove a stronger
result: up to polynomial factors in sample complexity, locally private and SQ learning are
equivalent. We recap this result in this section.

Throughout, we assume that there is a common distribution D over examples and labeling
concept f mapping examples to {−1, 1} for SQ and locally private learners. Therefore the locally
private learner interacts with users taking samples (x, f(x)), and the SQ learner interacts with
an SQ oracle SQD,f .

3.1 SQ Learning to Locally Private Learning

We start with the easier direction of the equivalence: transforming an SQ learner into a locally
private learner. First, we focus on simulating a single SQ oracle call under local privacy. An
oracle call to SQD,f (φ, τ) returns a τ -close approximation of Ex∼D [φ(x, f(x))]. φ has range
[−1, 1], so absent any privacy restrictions, by a standard concentration argument we can mimic

this by taking n = O
(

log(1/β)
τ2

)
samples x1, . . . , xn ∼ D and returning the empirical mean

1
n

∑n
i=1 φ(xi, f(xi)).
ε-local privacy only slightly complicates this argument. Now, instead of averaging the raw

values φ(x1, f(x1)), . . . , φ(xn, f(xn)), we average the randomizer outputs 1
n

∑n
i=1R(φ(xi, f(xi))).

Here R is an ε-randomizer that simply adds Laplace noise: R(y) = y + η for η ∼ Lap
(

2
ε

)
. A

similar concentration argument implies that the aggregate Laplace noise also concentrates, and
the cost is a O(1

ε2) blowup in the number of samples. Pseudocode for this algorithm appears
below.

Algorithm 1 Locally Private Simulation of Query to SQD
Require: Distribution D, privacy parameter ε, query function φ, tolerance τ

n← max
(
8 ln(4/β)

τ2
, 64 ln(2/β)

ε2τ2

)
v̂ ← 0
for i = 1, 2, . . . , n do

ηi ∼ Lap
(
2
ε

)
v̂ ← v̂ + (φ(xi, f(xi)) + ηi)
Output v̂

n
end for

Lemma 1 (Lemma 5.6 [19]). Given SQ oracle call SQD,f (φ, τ), there exists ε-locally private A′

requiring n = O
(

log(1/β)
ε2τ2

)
samples that with probability at least 1− β returns v̂ with

|v̂ − Ex∼D [φ(x, f(x)] | ≤ τ.

Proof. Privacy: Each randomizer output is of the form φ(xi, f(xi)) + ηi. Since φ has range
[−1, 1], it has `1 sensitivity 2. A standard result in differential privacy says that, for any
function with `1 sensitivity ∆, adding Lap

(
∆
ε

)
noise to its output ensures ε-differential privacy

(see e.g. Theorem 3.4 in the survey of Dwork and Roth [12]). Thus φ(xi, f(xi)) + ηi is an
ε-randomizer, so Algorithm 1 is ε-locally private.

Accuracy: Let v = Ex∼D [φ(x, f(x))] denote the true mean. It suffices to show that with
probability ≥ 1 − β, |v̂ − v| ≤ τ . First, we decompose v̂ = v̂1 + v̂2 into noiseless and noise

6

components

v̂1 = 1
n

n∑
i=1

φ(xi, f(xi)) and v̂2 = 1
n

n∑
i=1

ηi.

By an additive Chernoff bound,

PD
[
|v̂1 − v| ≥

τ

2

]
≤ 2 exp

(
−τ

2n

8

)
.

Thus with n ≥ 8 ln(4/β)
τ2 samples, with probability ≥ 1− β

2 , |v̂1 − v| ≤ τ
2 .

It remains to derive a lower bound on n to ensure |v̂2| ≤ τ
2 . We use the following concentra-

tion result for sums of Laplace random variables.

Lemma 2 (Lemma A.3 in Kasiviswanathan et al. [19]). Let η1, . . . , ηn ∼ Lap (ζ). Then for
every α > 0,

P
[∣∣∣∣∑n

i=1 ηi
n

∣∣∣∣ ≥ α] = exp

(
−α

2n

4ζ2

)
.

Substituting ζ = 2
ε in Lemma 2, with n ≥ 64 ln(2/β)

ε2τ2 samples, with probability ≥ 1 − β
2 ,

|v̂2| ≤ τ
2 . Combining these results and taking n = max

(
8 ln(4/β)

τ2 , 64 ln(2/β)
ε2τ2

)
, with probability at

least 1− β
|v̂ − v| = |(v̂1 − v) + v̂2| ≤ |v̂1 − v|+ |v̂2| ≤ τ.

With Lemma 1, it is straightforward to simulate an entire SQ algorithm with minimum
tolerance τ : for each SQ call, simulate it using Algorithm 1. The cost of simulating t calls is a
t blowup in sample complexity (for simulating each call separately) and a ln(t/β) rather than
a ln(1/β) term due to union bounding across the t calls. ε-local privacy follows since we query
new users for each simulation. We call this algorithm A′ and get our main theorem for this
section.

Theorem 1 (Theorem 5.7 in Kasiviswanathan et al. [19]). Let A be an SQ algorithm that makes
(possibly interactive) SQ oracle calls SQD,f (φ1, τ1), . . . ,SQD,f (φt, τt) where min{τ1, . . . , τt} ≥ τ .

The simulation A′ above is ε-locally private, has sample complexity n = O
(
t log(t/β)
ε2τ2

)
, and with

probability at least 1− β returns v̂1, . . . , v̂t such that for each i ∈ [t],

|v̂i − Ex∼D [φ(x, f(x))] | ≤ τi.

Moreover, A′ is noninteractive if and only if A is noninteractive.

3.2 Locally Private Learning to SQ Learning

We now turn to the more involved direction of the equivalence: transforming a locally private
learner to an SQ learner. Kasiviswanathan et al. [19] show that this transformation is possible
even for fully interactive protocols, albeit with a number of SQ oracle calls scaling with the
number of randomizer calls. However, we only want to separate noninteractive and interactive
protocols. As a result, we will prove a slightly weaker result that holds only for sequentially
interactive protocols. The benefit is that our result does not need to account for re-queried
users, and we get a simpler and shorter proof.

We briefly sketch this proof. A reasonable smaller goal is to simulate a single randomizer
call, i.e. a single step in a locally private protocol, using an SQ oracle: given randomizer R
and SQ oracle SQD,f , we want to use SQD,f to simulate the output of R(x, f(x)) when x ∼ D.
For a fixed randomizer output y, let py = Px∼D,R [R(x, f(x)) = y], and let qy = PR [R(⊥) = y]
(the exact identity of ⊥ ∈ X × {−1, 1} is irrelevant). For an ε-locally private protocol, R is

7

an ε-local randomizer, so qy approximates py within a multiplicative eε factor. To get a better
approximation, we will use qy to rejection sample from py.

The main obstacle to rejection sampling with qy and py is that the learner does not know
D, and thus does not know py. Our response is to use SQD,f to learn about py. Once we learn
a sufficiently good approximation p̃y, we can use it to rejection sample. Pseudocode for his
process appears in Algorithm 2.

Algorithm 2 SQ Simulation of ε-randomizer R

Require: Privacy parameter ε, randomizer R, SQ oracle SQD,f , number of randomizer calls t
Sample y ∼ R(⊥)
Set qy ← PR [R(⊥) = y]

Define function φ(x, f(x)) =
PR[R(x,f(x))=y]−qy

qy(eε−e−ε)

Set τ ← β
3e2εt

Set v ← SQD,f (φ, τ)
Set p̃y ← vqy(e

ε − e−ε) + qy
With probability

p̃y

qy(1+ β
3t)eε

output y, otherwise repeat

Theorem 2 (Claim 5.9 [19]). For every interactive (noninteractive) ε-locally private algorithm
A on t samples, there exists an interactive (noninteractive) SQ algorithm A′ that in expectation

makes teε queries to SQD,f with tolerance τ = Θ
(

β
e2εt

)
such that the statistical distance between

the output distributions of A and A′ is ≤ β.

Proof. First, we verify that the defined function φ maps to [−1, 1]. R is an ε-local randomizer,
so

φ(x, f(x)) =
PR [R(x, f(x)) = y]− qy

qy(eε − e−ε)

≤ qy(eε − 1)

qy(eε − e−ε)
≤ 1

and

φ(x, f(x)) =
PR [R(x, f(x)) = y]− qy

qy(eε − e−ε)

≥ qy(e−ε − 1)

qy(eε − e−ε)
≥ −1

since ε ≥ 0. Thus φ is a valid function for an SQ call. Next, we generate v by an SQ call
SQD,f (φ, τ). By our definition of φ, the expected value of such an SQ call is

E
[
SQD,f (φ, τ)

]
=

Ex∼D [PR [R(x, f(x)) = y]]− qy
qy(eε − e−ε)

=
py − qy

qy(eε − e−ε)

so
∣∣∣v − pyy−qy

qy(eε−e−ε)

∣∣∣ ≤ τ . Multiplying both sides of this inequality by qy(eε − e−ε) and using

p̃y = vqy(eε − e−ε) + qy gives

|p̃y − py| ≤ τ · qy(eε − e−ε)
≤ τ · pyeε(eε − e−ε)

≤ τpye2ε = py ·
β

3t

8

where the second inequality uses the fact that qy comes from an ε-randomizer. Thus

p̃y ∈ [(1− α)py, (1 + α)py] (1)

where α = β
3t . We have therefore shown that p̃y approximates py, the expected probability of

randomizer output y over the input draw and randomizer.
We can now use this knowledge of p̃y to show that our rejection sampling based on p̃y is

a good approximation. First, for a given iteration, any particular element y gets output with
probability

P [output y] = qy ·
p̃y

qy(1 + α)eε
=

p̃y
(1 + α)eε

∈
[

(1− α)

(1 + α)eε
· py,

1

eε
· py
]

where the last relationship follows from Equation 1. By similar logic, the probability that
Algorithm 2 terminates is

P [terminate] =
∑
y

qy ·
p̃y

qy(1 + α)eε
∈
[

1− α
(1 + α)eε

,
1

eε

]
. (2)

Finally, we combine the three previous expressions to get

P [output y | terminate] =
P [output y, terminate]

P [terminate]

=
P [output y]

P [terminate]

∈
[

1− α
1 + α

py,
1 + α

1− α
py

]
.

We have therefore shown that, upon terminating, the output distribution for Algorithm 2 ap-
proximates that of the local randomizer. It remains to show that this approximation, parame-
terized by α, is not too bad.

Recall that α = β
3t ≤

1
3 . Thus α ≥ 3α2, so 1 + α ≤ 1 + 2α − 3α2, and 1+α

1−α ≤ 1 + 3α.

Similarly, 1−α
1+α ≥ 1− 3α, so P [output y | terminate] ∈ [(1− 3α)py, (1 + 3α)py]. In particular,

|P [output y | terminate]− py| ≤ 3α =
β

t

so union-bounding over the t randomizer calls gives the statistical distance portion of the claim.
We conclude by analyzing sample complexity. By Equation 2 in every iteration

P [terminate] ≥ 1− α
1 + α

· e−ε,

so the expected number of iterations to terminate is 1+α
1−αe

ε ≤ 2eε by the preceding paragraph.
Thus the total expected number of SQ oracle calls across the t simulated randomizer calls is
O(t · eε).

We now pause to summarize our results so far. Theorem 1 showed how to simulate an
SQ learner with a locally private learner. Conversely, Theorem 2 showed how to simulate a
(sequentially interactive) locally private learner with an SQ learner. Overall, we have shown an
equivalence (up to polynomial factors) between locally private learning and SQ learning.

We proved Theorem 1 for completeness, but our most useful tool for the rest of this paper
will be Theorem 2. We will prove that certain problems are hard for noninteractive SQ learners
and easy for interactive SQ learners. By Theorem 2, this yields an analogous separation for
noninteractive and interactive locally private learners.

9

4 Separation for Masked Parity

The first concept class separating noninteractive and interactive locally private learning is
masked parity [19]. A given d-dimensional masked parity concept cdm,p splits the input into

halves based on the last bit x−1 of each example x. If x−1 = 1 then cdm,p(x) is a function of

pxd+1
, the xthd+1 bit of p. If x−1 = 0, then the mask m becomes relevant. If m = 0, then cdm,p(x)

is a function of the parity of p and x≤d, while if m = 1 then cdm,p(x) is the negation of this
quantity. Intuitively, a learner must recover m and p to get better than 3/4 accuracy, but it
is much easier to do this with two rounds of interaction than one. The formal statement and
proof of this result appear in Theorem 3 near the end of this section.

Definition 11. For parameters d ∈ N, m ∈ {0, 1}, and p ∈ {0, 1}d, a masked parity concept is
a function cdm,p : {0, 1}d×{0, 1}log(d)×{0, 1} → {−1, 1} that labels x ∈ {0, 1}d× [d]×{0, 1}3 by

cdm,p(x) =

{
(−1)m+〈p,x≤d〉 mod 2 x−1 = 0
(−1)pxd+1 x−1 = 1

where x≤d denotes the first d bits of x, pxd+1
denotes the bit of p indexed by xd+1 ∈ [d], and

x−1 denotes the last bit of x. The class of all such concepts is denoted CdMP .

We first show that an SQ learner can easily learn CdMP in two rounds of interaction in the
distribution-specific setting where D is uniform. At a high level, the learner spends the first
round learning each bit j of p using one statistical query per bit about examples where xd+1 = j,
x−1 = 1, and the label is −1. If pj = 1, such examples make up a 1

2d fraction of the example
distribution. If instead pj = 0, then there are no examples. Thus it is enough to approximate
the frequency of such examples by τ1 ≤ 1

5d . Doing so for each of the d bits takes d statistical
queries and recovers p̂ = p exactly.

In the second round, the learner makes a statistical query about examples where x−1 = 0
and the label is not (−1)〈p̂,x〉 mod 2. If the mask m = 0, then no such examples exist. If m = 1,
then half of the examples fall into this category. Thus a single SQ oracle call of tolerance τ2 ≤ 1

5
tells the learner m. Having recovered p and m, the learner exactly learns cdm,p in d+1 SQ oracle
calls in two rounds with probability 1. Pseudocode for this interactive SQ learner appears in
Algorithm 3.

Algorithm 3 Interactive SQ Learner for CdMP

Require: SQ oracle SQD,cdm,p over uniform distribution D
Set tolerance τ1 ← 1

5d
for j = 1, . . . , d (in parallel) do

Define function φj(x, c
d
m,p(x)) = (xd+1 = j ∧ x−1 = 1 ∧ cdm,p(x) = −1)

Set vj ← SQD,cdm,p(φj , τ1)

Set p̂j ←
(
vj ≥ 3

10d

)
end for
Set p̂← p̂1, ◦ · · · ◦ p̂d ∈ {0, 1}d
Define function φd+1(x, c

d
m,p(x)) = (x−1 = 0 ∧ cdm,p(x) 6= (−1)〈p̂,x≤d〉 mod 2)

Set tolerance τ2 ← 1
5

Set w ← SQD,cdm,p(φd+1, τ2)

Set m̂← (w ≥ 3
10)

Output cdm̂,p̂

3This extends to purely binary examples by replacing the element from [d] by an element from {0, 1}log(d). We
avoid this for the sake of neatness.

10

Note that the interactive learner always outputs an exactly correct hypothesis. This makes
it a (perfectly) strong learner. However, the distribution-dependence is crucial. For example, if
D is a distribution with no mass on examples where x−1 = 1, then the first round of Algorithm 3
no longer works. Instead, masked parity becomes as hard as parity, which requires a number of
SQ oracle calls exponential in d even for interactive SQ learners [20].

In contrast, Kasiviswanathan et al. [19] show that no noninteractive SQ learner for the
uniform example distribution can get error < 1

4 with a number of SQ oracle subexponential
in d. This means that strong learning of masked parity over the uniform distribution is much
harder for noninteractive SQ learners than it is for interactive SQ learners.

Before the formal statement and proof, we offer some intuition. The main idea is that before
the SQ learner sees the results of its SQ oracle calls, it has no idea what the parity p and mask
m are. In contrast, the interactive SQ learner could first learn p and then learn m using the
knowledge of p. Defining φd+1 in terms of p̂ made this knowledge of p necessary. Without this
knowledge, the noninteractive learner cannot define φd+1, and must instead effectively learn
parity, which is known to be hard [20].

Lemma 3 (Theorem 5.16 [19]). Fix the example distribution to be uniform. Then the interactive
SQ learner given in Algorithm 3 learns CdMP to error 0 with probability 1 in 2 rounds using
poly(d) SQs with minimum tolerance τ = 1

5d . However, there exists an SQ oracle O such that
for any noninteractive SQ learner making t queries to O, if the concept cdm̄,p̄ is drawn uniformly

at random from CdMP , then with probability at least 1
2 −

t
2d/3+2 over the draw of cdm̄,p̄ the learner

outputs a hypothesis with error ≥ 1
4 .

Proof. Interactive upper bound: First consider the jth query in round one, which aims to learn
pj . If pj = 1, then

Ex∼D
[
φj(x, c

d
m,p(x))

]
= Px∼D

[
xd+1 = j ∧ x−1 = 1 ∧ cdm,p(x) = −1

]
=

1

2d

where the last equality uses the fact thatD is uniform. Thus for τ1 = 1
5d and vj = SQD,cdm,p

(φj , τ1),

if pj = 1 then vj ≥ 1
2d −

1
5d = 3

10d , whereas if pj = 0 then vj ≤ 1
5d . It follows that each of the d

queries for j ∈ [d] reveals pj exactly, and after the first round p̂ = p.
Since p̂ = p, if m = 0 then

Ex∼D
[
φd+1(x, cdm,p(x))

]
= Px∼D

[
x−1 = 0 ∧ cdm,p(x) 6= (−1)〈p̂,x≤d〉 mod 2

]
= 0

and if m = 1 then Ex∼D
[
φd+1(x, cdm,p(x))

]
= 1

2 . Thus for τ2 = 1
5 and w = SQD,cdm,p

(φd+1, τ2),

if m = 0 then w ≤ 1
5 and if m = 1 then w ≥ 3

10 . Therefore the learner recovers m, cdm̂,p̂ = cdm,p,
and the learned hypothesis has 0 error.

Noninteractive lower bound: Suppose the SQ learner makes queries using functions φ1, . . . , φt.
Since these queries are made in a single nonadaptive batch, the functions are all independent of
m̄ and p̄. Our argument rests on proving a similar claim for the answers to these queries. We
will decompose each such answer into three parts: one depending only on φi (but not m̄ and p̄),
one depending on φi and p̄ (but not m̄), and one depending on all of φi, p̄, and m̄. The crux of
the argument is showing that we can (typically) approximate the t answers while ignoring this
last component. It follows that the answers (typically) do not reveal m̄. This in turn prevents
strong learning.

Consider one of the query functions φ (we drop the subscript from φi for neatness) and define

gφ =
Ex∼D [φ(x, 1) + φ(x,−1)]

2
and hφ(x) =

φ(x, 1)− φ(x,−1)

2
.

We now define the notation 〈·, ·〉D for function inputs to denote correlation over a distribution
D. For functions f1 and f2, we define

〈f1, f1〉D = Ex∼D [f1(x)f2(x)] .

11

Thus we can rewrite

Ex∼D
[
φ(x, cdm̄,p̄(x))

]
= Ex∼D

[
φ(x, 1) + φ(x,−1)

2
+

(φ(x, 1)− φ(x,−1))cdm̄,p̄(x)

2

]
= gφ + 〈hφ, cdm̄,p̄〉D.

This is the first step in our decomposition, as gφ depends only on φ, but not on m̄ and p̄. We
now further decompose 〈hφ, cdm̄,p̄〉D. We start by defining slightly different versions of hφ and

cdm̄,p̄ parameterized by a bit s ∈ {0, 1}:

hsφ(x) =

{
hφ(x) x−1 = s
0 x−1 6= s

and

cd,sm̄,p̄ =

{
cdm̄,p̄(x) x−1 = s
0 x−1 6= s

.

Thus hsφ and cd,sm̄,p̄ respectively behave like hφ and cdm̄,p̄ on points x where x−1 = s, and are
constant 0 otherwise. We therefore get

〈hφ, cdm̄,p̄〉D = 〈h1
φ, c

d,1
m̄,p̄〉D + 〈h0

φ, c
d,0
m̄,p̄〉D

and we have our desired decomposition

Ex∼D
[
φ(x, cdm̄,p̄(x))

]
= gφ + 〈h1

φ, c
d,1
m̄,p̄〉D + 〈h0

φ, c
d,0
m̄,p̄〉D

since gφ depends only on φ, 〈h1
φ, c

d,1
m̄,p〉D depends only on φ and p̄ (because x−1 = 1), and only

〈h0
φ, c

d,0
m̄,p〉D depends on φ, p̄, and m̄.

We now define the SQ oracle OD,cdm̄,p̄
. Our definition relies on the decomposition above by

selectively omitting the last term in the decomposition from its answers. For a given query φ
and tolerance τ ,

OD,cdm̄,p̄
(φ, τ) =

{
gφ + 〈h1

φ, c
d,1
m̄,p̄〉D |〈h0

φ, c
d,0
m̄,p̄〉D| < τ

Ex∼D
[
φ(x, cdm̄,p̄(x))

]
otherwise

.

O thus omits the last term of the decomposition when |〈h0
φ, c

d,0
m̄,p̄〉D| is small and returns the

true answer otherwise. By our decomposition, if every query φ has |〈h0
φ, c

d,0
m̄,p̄〉D| < τ , then O

never gives an answer that depends on m̄. We now show that this is “typically” (over the draw
of the target concept) the case.

Lemma 4. With probability at least 1 − t
2d/3+2 over the draw of cdm̄,p̄, for τ ≥ 1

2d/3 and any
nonadaptively chosen queries φ1, . . . , φt with minimum tolerance at least τ , for each query φi,
O returns gφi

+ 〈h1
φi
, cd,1m̄,p̄〉D and is a valid SQ oracle.

Proof. Consider p, p′ ∈ {0, 1}d and m ∈ {0, 1}. Then if p = p′,

〈cd,0m,p, c
d,0
m,p′〉D = Ex∼D

[
cdm,p(x) · cdm,p(x) · 1 [x−1 = 0]

]
= Ex∼D [1 [x−1 = 0]] =

1

2

since D is uniform. If p 6= p′ then

〈cd,0m,p, c
d,0
m,p′〉D = Ex∼D

[
cdm,p(x) · cdm,p′(x) · 1 [x−1 = 0]

]
= Ex∼D

[
(−1)m+〈p,x≤d〉 mod 2 · (−1)m+〈p′,x≤d〉 mod 2 · 1 [x−1 = 0]

]
= Ex∼D

[
(−1)〈p,x≤d〉+〈p′,x≤d〉 mod 2 · 1 [x−1 = 0]

]
= Ex∼D

[
(−1)〈p⊕p

′,x≤d〉 mod 2 · 1 [x−1 = 0]
]

= 0

12

where ⊕ denotes XOR. Fix m ∈ {0, 1}. By this second p 6= p′ case, {cd,0m,p}p∈{0,1}d is a set of

orthogonal functions under 〈·, ·〉D. Using the first p = p′ case, we normalize by
√

2 and get that
{
√

2 · cd,0m,p,}p∈{0,1}d is orthonormal.
Now we return to analyzing h0

φ, which we recall behaves like hφ when x−1 = 0 and is constant
0 otherwise. We get ∑

p∈{0,1}d
〈h0
φ,
√

2 · cd,00,p〉2D ≤ ||h0
φ||22

= 〈h0
φ, h

0
φ〉D

≤ 1

2

where the first inequality uses Parseval’s identity and the fact that h0
φ is a d′ > d-dimensional

object and {
√

2·cd,00,p}p∈{0,1}d is a d-dimensional orthonormal set by above, and the last inequality
holds because hφ ≤ 1 in general and is 0 on the half of the examples where x−1 = 1. The same

logic gives
∑
p∈{0,1}d〈h0

φ,
√

2 · cd,01,p〉2D ≤ 1
2 so summing the previous two equations gives∑

(m,p)∈{0,1}×{0,1}d
2 · 〈h0

φ, c
d,0
m,p〉2D ≤ 1.

Thus at most 2(2d/3)−1 of the 2d+1 possible functions cdm,p have |〈h0
φ, c

d,0
m,p〉D| ≥ 1

2d/3 . Since our

original function cdm̄,p̄ was a uniform random draw from the set of all 2d+1 possible functions

cdm,p, for any φ

P(m,p)∼U ({0,1}×{0,1}d)

[
|〈h0

φ, c
d,0
m,p〉D| ≥

1

2d/3

]
≤ 22d/3−1

2d+1
=

1

2(d/3)+2
.

Moreover, |〈h0
φ, c

d,0
0,p〉D| = |〈h0

φ, c
d,0
1,p〉D| so the same statement holds irrespective of m. Thus

Pp∼U{0,1}d

[
|〈h0

φ, c
d,0
m̄,p〉D| ≥

1

2d/3

]
≤ 1

2d/3+2
.

Since the learner makes t queries φ1, . . . , φt, by a union bound

Pp̄∼U{0,1}d

[
|〈h0

φ1
, cd,0m̄,p̄〉D| <

1

2d/3
, . . . , |〈h0

φt
, cd,0m̄,p̄〉D| <

1

2d/3

]
≥ 1− t

2d/3+2

and in particular O answers all queries φi for i ∈ [t] using vi = gφi
+ 〈h1

φi
, cd,1m̄,p̄〉D. Since for each

query |〈h0
φ, c

d,0
m̄,p̄〉D| < 1

2d/3 , by our decomposition each such vi has

|vi − Ex∼D
[
φ(x, cdm̄,p̄(x))

]
| = |〈h0

φ, c
d,0
m̄,p̄〉D| <

1

2d/3

and O can answer such queries to any tolerance τ ≥ 1
2d/3 .

By Lemma 4, with probability at least 1− t
2(d/3)+2 the learner only receives answers that are

independent of m̄. Thus with probability at least 1
2 −

t
2(d/3)+2 the learner recovers the wrong

value of m̄. The resulting hypothesis therefore mislabels at least half of the examples with
x−1 = 0 and gets error ≥ 1

4 over the uniform distribution.

By Lemma 3, a noninteractive SQ learner requires Ω
(
2(d/3)+2

)
SQ oracle calls to strong

learn CdMP over the uniform example distribution, but an interactive SQ learner only needs
O(d). Using the SQ-to-local transformation from Theorem 1, we almost immediately get the
analogous separation for local privacy.

13

Theorem 3 (Corollary 5.17 [19]). Fix the example distribution to be uniform. Then there exists
an interactive ε-locally private protocol A that learns CdMP to error 0 with probability 3

4 using

O
(
d3 log(d)

ε2

)
samples, but any noninteractive ε-locally private protocol that learns CdMP to error

< 1
4 with probability ≥ 3/4 must use n = ω(poly(d)) samples.

Proof. Interactive upper bound: Immediate from using Theorem 1 to convert the interactive
SQ learner from Lemma 3 into an interactive locally private learner.

Noninteractive lower bound: If there exists a noninteractive ε-locally private algorithm that
with probability ≥ 3/4 learns CdMP over the uniform distribution to error < 1/4 using O(poly(d))
samples, then Theorem 2 and Markov’s inequality gives a noninteractive SQ learner that with
probability ≥ 2/3 learns CdMP to error < 1/4 in O(poly(d)) SQ oracle calls of tolerance τ =

Θ
(

1
eεpoly(d)

)
. However, Lemma 3 says that such any such noninteractive SQ learner for CdMP

requires Ω
(
2(d/3)+2

)
SQ oracle calls, a contradiction.

The rest of the survey will focus on similar separations for weak distribution-independent
learning.

5 PAC Learning and Margin Complexity

We now turn to the second work in this survey. At a high level, Daniely and Feldman [7] give
a general connection between the number of noninteractive SQ oracle calls sufficient to learn a
concept class and the margin complexity of that concept class. This connection enables them
to import noninteractive SQ lower bounds as straightforward corollaries of margin complexity
lower bounds. We start by defining margin complexity.

Definition 12. Let X be a domain and let C be a class of boolean functions over X. The
margin complexity MC (C) of C is the minimal nonnegative number M such that there exists
natural number d and embedding Υ: X → Bd(1) of X in the d-dimensional `2 unit ball with the
following property: for every concept f ∈ C, there exists w ∈ Bd(1) such that

min
x∈X
{f(x) · 〈w,Υ(x)〉} ≥ 1

M
.

We can also think of margin complexity in a geometric way. The margin complexity of C
is the smallest nonnegative number such that there exists an embedding of examples in Rd (for
some d) where each concept in C is associated with a hyperplane correctly separating labeled
examples with margin ≥ 1

M . Thus a smaller margin complexity M corresponds to a larger
separating margin for the hyperplanes. We should therefore expect that concept classes with
smaller margin complexity are easier to learn than concept classes with larger margin complexity.
This is the main result of Daniely and Feldman [7].

Having defined margin complexity, we start with a lemma from previous work by Feld-
man [13] and Kallweit and Simon [18]. Lemma 5 connects the margin complexity of a class
with the existence of an algorithm A that outputs a collection of concepts such that at least
one output concept is correlated with the true concept.

Lemma 5 ([13, 18]). Let X be a domain and let C be a class of boolean functions over X.
Suppose there exists an algorithm A that generates a set of functions h1, . . . , hm such that for
every concept f ∈ C and distribution D over X, with probability at least β > 0 over any
randomness of A, there exists i ∈ [m] such that |Ex∼D [f(x)hi(x)] | ≥ 1

m . Then

MC (C) ≤ 2m3/2

β
.

14

Note that Lemma 5 is not a result about learning. Instead, it is a result about the concept
class C in question. A examines C and outputs m functions such that with nonzero probabil-
ity, for any example distribution, every concept in C is correlated with at least one of the m
functions. If A can accomplish this using few functions, it suggests that C is a simple class for
distribution-independent learning. Accordingly, Lemma 5 upper bounds the margin complexity
of C depending on the size of this “covering” set of functions.

We now have all of the tools needed to prove the main result from Daniely and Feldman [7].

Theorem 4. Let C be a class of boolean functions closed under negation. Assume that for
some m there exists a noninteractive distribution-independent SQ learner A that, with success
probability at least 2

3 , PAC learns C with error < 1
2 using ≤ m queries to an SQ oracle with

tolerance ≥ 1/m. Then MC (C) ≤ 6m3/2.

Proof. By the same decomposition used to prove Theorem 3, we can rewrite any statistical
query function φ by φ(x, f(x)) = gφ(x) + f(x)hφ(x) where

gφ(x) =
φ(x, 1) + φ(x,−1)

2
and hφ(x) =

φ(x, 1)− φ(x,−1)

2
.

We now associate each distribution and target concept pair (D, f) with its own SQ oracle OD,f .
Like the SQ oracle defined in the proof of Theorem 3, OD,f will use the decomposition of φ to
give good approximations when possible and exact answers otherwise. The approximations will
depend only on gφ and thus be independent of the labels. More formally, we define OD,f by

OD,f (φ, τ) =

{
Ex∼D [gφ(x)] |Ex∼D [f(x)hφ(x)] | < 1

m
Ex∼D [φ(x, f(x))] otherwise

for any tolerance τ ≥ 1
m . By our decomposition, whenever OD,f does not return an exact

answer, it returns an additive approximation that is better than 1
m -close. Thus OD,f is a valid

SQ oracle with tolerance 1
m .

Recall that we have a noninteractive SQ algorithm A that makes at most m SQ oracle calls.
Let b ∼ B denote any draw of random bits for A from some distribution B, let φb1, . . . , φ

b
m′ be

the resulting m′ ≤ m noninteractive SQ oracle calls made, and let f̂ bOD,f
denote the resulting

concept output by A when used with the SQ oracle we defined above. Let E1 be the event that
f̂ bOD,f

has error < 1
2 , and let E2 be the event that |〈f, hφb

i
〉D| ≥ 1

m for some i ∈ [m′]. We want
to lower bound the probability that E2 occurs. Once we do so, we can use those SQ oracle
functions φb1, . . . , φ

b
m′ as the “covering set” of functions in Lemma 5 to upper bound MC (C).

Lemma 6. If Pb∼B [E1] ≥ 2
3 , then Pb∼B [E2] > 1

3 .

Proof. Conditioned on ¬E2, the answer from OD,f only depends on |Ex∼D [f(x)hφ(x)] | and gφ,
so the answers given by OD,f are identical to those given by OD,−f . Thus conditioned on E1

and ¬E2, if the target concept is actually −f then A fails, i.e. PD
[
−f(x) 6= f̂Ob

D,−f

]
> 1

2 .

Assume for contradiction that Pb∼B [E2] ≤ 1
3 . Then Pb∼B [E1 ∧ ¬E2] > 1

3 . By the first
paragraph, it follows that when the target function is −f and the distribution is D, with prob-
ability > 1

3 over the draw of b, A fails. This contradicts our overall lemma supposition that
Pb∼B [E1] ≥ 2

3 , so it must be that Pb∼B [E2] > 1
3 .

Since f and D were arbitrary, slotting Lemma 6 into Lemma 5 gives

MC (C) ≤ 2m3/2

1/3
= 6m3/2.

We can use Theorem 4 to transform lower bounds on margin complexity into lower bounds
on noninteractive statistical query complexity. This in turn yield noninteractive locally private
lower bounds through the SQ-to-local transformation of Theorem 2. In the next section, we go
through this process for the concept class of decision lists.

15

6 Separation for Decision Lists

We start by defining the concept class of decision lists [22]. A decision list is, informally, a
sequence of conditionals. Each conditional has an associated value. At each conditional, if the
conditional is met, then its associated value is the output label. If no conditional is met, a
default label is output instead.

Definition 13 ([22]). A d-dimensional decision list is defined by an ordered sequence f =
(a1, b1), (a2, b2), . . . (aj , bj), b consisting of literal-label pairs (ai, bi) and a final default label b. f
labels a point x ∈ {0, 1}d by either 1. bi, for the minimal i such that ai(x) is true or 2. b if no
such bi exists. We denote the class of all d-dimensional decision lists by CdDL.

A decision list therefore checks a list of literals in sequence, returns the label bi for the
first literal ci that holds on x, or returns the default label b if none of the literals hold. This
corresponds to any decision process that simply checks rules in sequence.

Using the results of Section 3 and 5 with past work by Kearns [20], it is easy to separate
noninteractive and interactive locally private learning of decision lists.

Theorem 5. In the distribution-independent setting, there exists an interactive ε-locally private

protocol A that learns CdDL to error < 1
2 with probability 2

3 using O
(

poly(d)
ε2

)
samples. However,

any noninteractive ε-locally private protocol that learns CdDL to error < 1
2 with probability 2

3

must use 2Ω(d1/3)

eε samples.

Proof. Interactive upper bound: Kearns [20] gives an interactive weak SQ learner for CdDL based

on the original decision list learner given by Rivest [22]. It achieves success probability 2
3 using

O(poly(d)) statistical queries with minimum tolerance τ = Ω(poly(1/d)). Combining this SQ
learner with Theorem 1 gives the result.

Noninteractive lower bound: First, we verify that CdDL is closed under negation. This is
because we can negate any decision list by negating all of its label bits b1, . . . , bj , b. Second, we
use a lower bound on the margin complexity of decision lists from Buhrman et al. [5].

Lemma 7 ([5]). MC
(
CdDL

)
= 2Ω(d1/3).

Next, we combine Lemma 7 with Theorem 4 to get that any noninteractive distribution-
independent SQ algorithm that learns CdDL to error < 1

2 with probability ≥ 2
3 must have a

worst-case number of SQ oracle calls

m ≥

(
MC

(
CdDL

)
6

)2/3

= 2Ω(d1/3). (3)

We now turn to Theorem 2. If there exists a noninteractive ε-locally private algorithm that
distribution-independently PAC learns CdDL with probability at least 2

3 and error < 1/2 using

n = 2o(d1/3)

eε samples, then Theorem 2 and Markov’s inequality gives a noninteractive SQ learner

that learns CdDL to error < 1
2 with probability ≥ 2

3 in 2o(d
1/3) SQ oracle calls. This contradicts

Equation 3, so no such noninteractive ε-locally private protocol exists.

16

References

[1] Differential Privacy Team Apple. Learning with privacy at scale. Technical report, Apple,
2017.

[2] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simulta-
neously solving how and what. In International Cryptology Conference (CRYPTO), 2008.

[3] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan,
David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld.
Prochlo: Strong privacy for analytics in the crowd. In Symposium on Operating Systems
Principles (SOSP), 2017.

[4] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven
Rudich. Weakly learning dnf and characterizing statistical query learning using fourier
analysis. In Symposium on the Theory of Computing (STOC), 1994.

[5] Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. On computation and com-
munication with small bias. In Conference on Computational Complexity (CCC), 2007.

[6] TH Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially
private multi-party aggregation. In European Symposium on Algorithms (ESA), 2012.

[7] Amit Daniely and Vitaly Feldman. Learning without interaction requires separation. In
Neural Information and Processing Systems (NeurIPS), 2019.

[8] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In Neural Information Processing Systems (NIPS), pages 3574–3583, 2017.

[9] John Duchi and Ryan Rogers. Lower bounds for locally private estimation via communi-
cation complexity. In Conference on Learning Theory (COLT), 2019.

[10] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy, data processing
inequalities, and statistical minimax rates. arXiv preprint arXiv:1302.3203, 2013.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference (TCC), 2006.

[12] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science, 2014.

[13] Vitaly Feldman. Evolvability from learning algorithms. In Symposium on the Theory of
Computing (STOC), 2008.

[14] Garfinkel, Simson L. Deploying differential privacy for the 2020 census of popula-
tion and housing. census.gov/content/dam/Census/newsroom/press-kits/2019/jsm/

presentation-deploying-differential-privacy-for-the-2020-census-of-pop-and-housing.

pdf, 2019. Accessed: 09-12-2019.

[15] Miguel Guevara. Enabling developers and organizations to use differential privacy.
developers.googleblog.com/2019/09/enabling-developers-and-organizations.

html, 2019. Accessed: 09-12-2019.

[16] Matthew Joseph, Jieming Mao, Seth Neel, and Aaron Roth. The role of interactivity in
local differential privacy. In Foundations of Computer Science (FOCS), 2019.

[17] Matthew Joseph, Jieming Mao, and Aaron Roth. Exponential separations in local differ-
ential privacy. In Symposium on Discrete Algorithms (SODA), 2020.

17

census.gov/content/dam/Census/newsroom/press-kits/2019/jsm/presentation-deploying-differential-privacy-for-the-2020-census-of-pop-and-housing.pdf
census.gov/content/dam/Census/newsroom/press-kits/2019/jsm/presentation-deploying-differential-privacy-for-the-2020-census-of-pop-and-housing.pdf
census.gov/content/dam/Census/newsroom/press-kits/2019/jsm/presentation-deploying-differential-privacy-for-the-2020-census-of-pop-and-housing.pdf
developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
developers.googleblog.com/2019/09/enabling-developers-and-organizations.html

[18] Michael Kallweit and Hans Ulrich Simon. A close look to margin complexity and related
parameters. In Conference on Learning Theory (COLT), 2011.

[19] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? Foundations of Computer Science (FOCS),
2011.

[20] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 1998.

[21] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM
Journal on Computing, 1993.

[22] Ronald L Rivest. Learning decision lists. Machine learning, 1987.

[23] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is interaction necessary for dis-
tributed private learning? In Security and Privacy (SP), 2017 IEEE Symposium on, pages
58–77, 2017.

[24] Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of
Cryptography, pages 347–450. Springer, 2017.

[25] Leslie G Valiant. A theory of the learnable. In Symposium on the Theory of Computing
(STOC), 1984.

[26] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

18

	Introduction
	Related Work

	Preliminaries for Local Privacy, SQ Learning, and PAC Learning
	Differential Privacy
	Statistical Query Learning
	PAC Learning

	Local Privacy and SQ Learning
	SQ Learning to Locally Private Learning
	Locally Private Learning to SQ Learning

	Separation for Masked Parity
	PAC Learning and Margin Complexity
	Separation for Decision Lists

