Fairness in Learning: Classic and Contextual Bandits

M. Joseph, M. Kearns, J. Morgenstern, A. Roth {majos, mkearns, jamiemor, aaroth}@cis.upenn.edu

High-Level Motivation

- Machine learning can be unfair in many ways: data that encodes existing biases; data collection feedback loops; different populations having different properties; less data about minority populations ...
- How do we define "fair learning"?
- What is the performance cost of being fair?

General Problem Setting

- \blacktriangleright We study the *bandits* setting: **k** arms, on day $\mathbf{t} \in \mathbf{T}$ choose arm \mathbf{i}^{t} and observe noisy reward $\mathbf{r}_{\mathbf{i}^{t}}^{t}$
- Goal: maximize $\sum_{t} \mathbb{E}[\mathbf{r}_{i^{t}}^{t}]$, measure performance by regret $R(T) = \sum_{t} [\max_{i \in [k]} \mathbb{E}[r_{i^{t}}^{t}] - r_{i^{t}}^{t}]$
- ► Models a program that learns to grant loans to **k** different groups by granting loans to one member of one group each day

General Fairness Definition

 Algorithm A is fair if with probability $\geq 1 - \delta$, for all days $\mathbf{t} \in \mathbf{T}$ and for all $\mathbf{i}, \mathbf{j} \in [\mathbf{k}]$ $\mathbb{E}[\mathbf{r}_{i}^{t}] \geq \mathbb{E}[\mathbf{r}_{j}^{t}] \Rightarrow \pi_{i|h_{1},...,h_{t-1}}^{t} \geq \pi_{j|h_{1},...,h_{t-1}}^{t}$ where $\pi_{\mathbf{i}|\mathbf{h}_1,\ldots,\mathbf{h}_{t-1}}^{\mathbf{t}} =$ \mathbb{P} [choose i in round t after observing h_1, \ldots, h_{t-1}]. "With high probability, never more likely to choose a worse arm than a better arm"

NIPS 2016

Why is Fairness Hard?

Optimal policies always play the expected best arm and therefore are fair. Challenge: how to *learn* the optimal policy fairly?

Classic Bandits Setting

- $\blacktriangleright \mu_i$ for each arm i such that for all i and t $\mathbb{E}[\mathbf{r}_i^t] = \mu_i$
- ► Fair: $\mu_{i} \ge \mu_{j} \Rightarrow \pi^{t}_{i|h_{1},...,h_{t-1}} \ge \pi^{t}_{j|h_{1},...,h_{t-1}}$ "With high probability, never more likely to choose an arm with lower μ than an arm with higher μ''

A Fair Classic Bandit Algorithm: FairBandits

Uses confidence intervals around estimated means to reason about relative quality; fairness forces chaining

► In round **t**: pick uniformly at random from "chain" of top arms (top connected component of overlapping confidence intervals)

FairBandits plays randomly from chain (Arms 1 to 4)

- **Cost of Fairness in Classic Bandits**
- FairBandits regret upper bound $R(T) = \tilde{O}(\sqrt{k^3T})$ Regret lower bound (any fair algorithm) $R(T) = \Omega(k^3)$, while $R(T) = \tilde{\Theta}(\sqrt{kT})$ (unfair)

Contextual Bandits Setting

Function $\mathbf{f_i} \in \mathbf{C}$ for $\mathbf{i} \in [\mathbf{k}]$; $\mathbf{x_i^t} \in \mathbb{R}^d$ for $\mathbf{t} \in \mathbf{T}$, $i \in [k]$ such that $\mathbb{E}[r_i^t] = f_i(x_i^t)$ $\blacktriangleright \text{ Fair: } \mathbf{f_i(x_i^t)} \geq \mathbf{f_j(x_j^t)} \Rightarrow \pi_{i|h_1,...,h_{t-1}}^t \geq \pi_{j|h_1,...,h_{t-1}}^t$ "With high probability, never more likely to choose an arm with lower $f(x^t)$ than an arm with higher **f(x**^t)"

Fair Contextual Bandits and KWIK Learning

 $\triangleright C$ is KWIK-learnable [1] with poly KWIK bound $\Leftrightarrow \mathcal{C}$ can be learned fairly with poly regret For d-dimensional *linear functions*, KWIK bounds [2] imply fair learning with $R(T) = \tilde{O}(\max(T^{4/5}k^{6/5}d^{3/5}, k^3))$ For **d**-dimensional *conjunctions*, KWIK bounds [3] imply that no fair learning algorithm has a worst-case regret bound better than $R(T) = \Omega(2^d)$

References

[1] Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a framework for self-aware learning. Machine learning, 82(3):399–443, 2011.

[2] Alexander L Strehl and Michael L Littman.

Online linear regression and its application to model-based reinforcement learning.

In Advances in Neural Information Processing Systems, pages 1417–1424, 2008.

[3] Lihong Li.

A unifying framework for computational reinforcement learning theory. PhD thesis, Rutgers, The State University of New Jersey, 2009.

University of Pennsylvania