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Machine learning deserves wide use

More use means higher stakes

How to balance?
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Study how machine learning can be
efficient, accurate, and fair
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Many reasonable
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definitions!
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         from sequential choices
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$?
Day 4
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...but cost often not too bad
(performance upper bound)
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Want to reason about
how learning choices
affect environment
→ reinforcement
learning (MDPs)
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 Minimal – more “necessary” than 
“sufficient”

 Holds throughout learning process

 Aligned with optimality!
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Uniformly random exploration is fair

Optimal exploitation is fair

Need fair path
between



  

Outline For This Talk

  

Matthew Joseph, UPenn   

1. Specify a setting

2. Specify a fairness definition

3. See what guarantees we can make

Reinforcement learning

Meritocratic fairness



  

Outline For This Talk

  

Matthew Joseph, UPenn   

1. Specify a setting

2. Specify a fairness definition

3. See what guarantees we can make

Reinforcement learning

Meritocratic fairness

1. Specify a setting

2. Specify a fairness definition

3. See what guarantees we can make



  

Our Performance Metric

  

Matthew Joseph, UPenn   

   # steps required before
average Q*-value of visited states

is near-optimal



  

Without Fairness

  

Matthew Joseph, UPenn   



  

Without Fairness

  

Matthew Joseph, UPenn   

Near-optimality takes
poly(MDP parameters) steps



  

Without Fairness

  

Matthew Joseph, UPenn   

Near-optimality takes
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What does fairness cost?
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Theorem: No fair algorithm can
guarantee near-optimality in under
exponential(# states) steps.
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 if Q*(s, a)  Q*(s, b),≥
  then P(s, a)  P(s, b)≥

Fairness  must explore randomly→
to learn Q* values...

...but sometimes random exploration
does poorly
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Exponential in # states 

“Combination lock” MDP
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  then L(s, a)  ≥ L(s, b)

    if Q*(s, a) +  α  Q*(s, b),≥
        then L(s, a)  ≥ L(s, b)

Approximate
“action” fairness
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No longer exponential in # states

(Still) exponential in 1/(1-γ)
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Start from E3 [KS98]

Adapt to satisfy approximate-action
fairness
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Organize world into “known” and
“unknown” states

“Known”: good estimates of
transitions, rewards, Q* values . . .
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In known state:

Either fairly exploit in known states
for good reward

Or fairly explore to unknown quickly
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E3  Fair-E→ 3

  

Matthew Joseph, UPenn   

Approximate fairness makes
everything trickier

“Known” must be stronger

Computing fair policies more delicate
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Theorem: Fair-E3 is approximate
action fair and near-optimal in 
poly(all MDP parameters but γ),
exp(1/1-γ) steps
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Without fairness: near-optimality in
poly(MDP parameters)

With fairness:
exp(# states)

With approximate fairness:
exp(discount factor)
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 Fair ML matters!
 Proposed meritocratic fairness,
studied in RL setting

 Proved separations between “unfair”,
fair, and approximately fair RL

 Can we do better?

Paper: arxiv.org/abs/1611.03071

Thanks!
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