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Machine learning deserves wide use

More use means higher stakes

How to balance?
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Study how machine learning can be
efficient, accurate, and fair
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Want to reason about
how learning choices
affect environment

— reinforcement
learning (MDPs)
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it quality(a) = quality(b),
then P(choose a) = P(choose b)

Y Long-term

it Q%(s, a) = Q*(s, b),
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Benefits

* Minimal - more “necessary” than
“sufficient”

»Holds throughout learning process

= Aligned with optimality!
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Without Fairness

Near-optimality takes
poly(MDP parameters) steps

What does fairness cost?
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Lower Bound

Theorem: No fair algorithm can
guarantee near-optimality in under
exponential(# states) steps.
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Lower Bound Sketch

it Q%(s, a) = Q%(s, b),
then P(s, a) = P(s, b)

Fairness — must explore randomly
to learn Q™ values...

..but sometimes random exploration
does poorly
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—
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An Algorithm: Fair-E’
Start from E> [KS98]

Adapt to satisty approximate-action
fairness
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Organize world into “known™ and
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“Known': good estimates of
transitions, rewards, Q™ values . ..
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Fair-E>: Sketch
In known state:

Either fairly exploit in known states
for good reward

Or fairly explore to unknown quickly
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E> - Fair-E>

Approximate fairness makes
everything trickier

“Known must be stronger

Computing fair policies more delicate
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Upper Bound

Theorem: Fair-E> is approximate

action fair and near-optimal in
poly(all MDP parameters but vy),

exp(1/1-y) steps
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Collected Results

Without fairness: near-optimality in
poly(MDP parameters)

With fairness:
exp(# states)

With approximate fairness:
exp(discount factor)
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Summing Up

»Fair ML matters!

» Proposed meritocratic fairness,
studied in RL setting

»Proved separations between “unfair’,
fair, and approximately fair RL

=Can we do better? Than ks!

Paper: arxiv.org/abs/1611.03071
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