Fairness in Reinforcement Learning

Fairness in Reinforcement Learning

Joint work with

Shahin Jabbari

Michael Kearns

Jamie Morgenstern

Aaron Roth

Machine learning has 'made it'

Machine learning has 'made it'

Machine learning has 'made it'

MIT Technology Review

An Al-Fueled Credit Formula Might Help You Get a Loan

Startup ZestFinance says it has built a machine-learning system that's smart enough to find new borrowers and keep bias out of its credit analysis.

Machine learning has 'made it'

MIT Technology Review

An Al-Fueled Credit Formula wight Help You Get a Loan

Startup ZestFinance says it has built a machine-learning system that's smart enough to find new borrowers and keep bias out of its credit analysis.

Machine learning has 'made it'

MIT Technology Review

An Al-Fueled Credit Formula wight Help You Get a Loan

Startup ZestFinance says it has built a machin system that's smart enough to find new borrov bias out of its credit analysis.

Responsibility lagging behind power

Responsibility lagging behind power

MIT Technology Review

Intelligent Machines

How to Fix Silicon Valley's Sexist Algorithms

Computers are inheriting gender bias implanted in language data sets—and not everyone thinks we should correct it.

Responsibility lagging behind power

Computers are inheriting gender bias implanted in language data sets — and not everyone thinks we should correct it.

Responsibility lagging behind power

PRO PUBLICA Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

Revie Google Image search for CEO Intelligen has Barbie as first female result How to Fix Silicon Valley's Sexist Algorithms

Computers are inheriting gender bias implanted in language data sets - and not everyone thinks we should correct it.

MIT

Responsibility lagging behind power

PRO PUBLICA Machine Bias There's soft MIT DEPENDEN'I Techr В **GLE'S ALGORITHM SHOWS Revie** Google How to Fix Si PRESTIGIOUS JOB ADS TO MEN, **Algorithms BUT NOT TO WOMEN** Computers are inheriting g data sets — and not everyone thinks we should correct it

Machine learning deserves wide use

Machine learning deserves wide use

More use means higher stakes

Machine learning deserves wide use

More use means higher stakes

How to balance?

Our Motivation

Our Motivation

Study how machine learning can be efficient, accurate, and fair

But what is 'fairness'?

But what is 'fairness'?

Many reasonable settings and definitions!

1. Specify a setting

1. Specify a setting

2. Specify a fairness definition

1. Specify a setting

2. Specify a fairness definition

3. See what guarantees we can make

1. Specify a setting

2. Specify a fairness definition

3. See what guarantees we can make

A General Setting

A General Setting

Learning through feedback from sequential choices

An Example
Learning how to grant loans

Learning how to grant loans

Learning how to grant loans

Learning how to grant loans

\$?

Learning how to grant loans

Fairness (TBD!) adds cost

Fairness (TBD!) adds cost (performance lower bound)...

Fairness (TBD!) adds cost (performance lower bound)...

...but cost often not too bad

Fairness (TBD!) adds cost (performance lower bound)...

...but cost often not too bad (performance upper bound)

Bandits setting is limited – choices don't affect environment

Bandits setting is limited – choices don't affect environment

\$7

Bandits setting is limited – choices don't affect environment

\$?

Bandits setting is limited – choices don't affect environment

Bandits setting is limited – choices don't affect environment

Bandits setting is limited – choices don't affect environment

Our Specific Setting

Our Specific Setting

Want to reason about how learning choices affect environment

Our Specific Setting

Want to reason about how learning choices affect environment → reinforcement learning (MDPs)

Outline For This Talk

- Specify a setting
 Reinforcement learning

 Specify a fairness definition
- 3. See what guarantees we can make

Outline For This Talk

 Specify a setting Reinforcement learning
 2. Specify a fairness definition

3. See what guarantees we can make

Meritocratic fairness [JKMR16]:

Meritocratic fairness [JKMR16]: (whp), in every choice learning algorithm makes, for options a and b

Meritocratic fairness [JKMR16]: (whp), in every choice learning algorithm makes, for options a and b

if quality(a) \geq quality(b),

Meritocratic fairness [JKMR16]: (whp), in every choice learning algorithm makes, for options a and b

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

In Our Example...

In Our Example...

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

if reward(a) \geq reward(b),

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

if reward(a) \geq reward(b), then P(choose a) \geq P(choose b)

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

if reward(a) \geq reward(b), then P(choose a) \geq P(choose b)

Short-term

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

if $Q^*(s, a) \ge Q^*(s, b)$, then $P(s, a) \ge P(s, b)$

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b) Long-term if $Q^*(s, a) \ge Q^*(s, b)$, then $P(s, a) \ge P(s, b)$

Limitations

Limitations

Minimal – more "necessary" than "sufficient"

Limitations

Minimal – more "necessary" than "sufficient"

Assumes feedback reflects quality

Minimal – more "necessary" than "sufficient"

Minimal – more "necessary" than "sufficient"

Holds throughout learning process

Minimal – more "necessary" than "sufficient"

- Holds throughout learning process
- •Aligned with optimality!

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

Uniformly random exploration is fair

(since P(choose a) = P(choose b)) Uniformly random exploration is fair

Uniformly random exploration is fair

Uniformly random exploration is fair

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

Optimal exploitation is fair

Uniformly random exploration is fair

if quality(a) \geq quality(b), then P(choose a) \geq P(choose b)

Optimal exploitation is fair (since quality(best) \geq quality(rest))

Uniformly random exploration is fair

Optimal exploitation is fair

Uniformly random exploration is fair

Need fair path between

Optimal exploitation is fair

Outline For This Talk

- Specify a setting Reinforcement learning
 2. Specify a fairness definition Meritocratic fairness
- 3. See what guarantees we can make

Outline For This Talk

 Specify a setting Reinforcement learning
 Specify a fairness definition Meritocratic fairness
 See what guarantees we can make

Our Performance Metric

Without Fairness

Without Fairness

Near-optimality takes poly(MDP parameters) steps

Without Fairness

Near-optimality takes poly(MDP parameters) steps

What does fairness cost?

Lower Bound

Lower Bound

Theorem: No fair algorithm can guarantee near-optimality in under exponential(# states) steps.

Lower Bound Sketch
if $Q^*(s, a) \ge Q^*(s, b)$, then $P(s, a) \ge P(s, b)$

if $Q^*(s, a) \ge Q^*(s, b)$, then $P(s, a) \ge P(s, b)$

Fairness \rightarrow must explore randomly to learn Q^{*} values...

if $Q^*(s, a) \ge Q^*(s, b)$, then $P(s, a) \ge P(s, b)$

Fairness \rightarrow must explore randomly to learn Q^{*} values...

...but sometimes random exploration does poorly

"Combination lock" MDP

"Combination lock" MDP

Exponential in # states

How to get around this?

How to get around this?

How to get around this?

Idea: relax to approximate fairness

if $Q^*(s, a) \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \ge \mathcal{L}(s, b)$

if $Q^*(s, a) \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \ge \mathcal{L}(s, b)$

if $Q^*(s, a) \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \geq \mathcal{L}(s, b)$ if $Q^*(s, a) + \alpha \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \geq \mathcal{L}(s, b)$

if $Q^*(s, a) \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \geq \mathcal{L}(s, b)$ Approximate " "action" fairness if $Q^*(s, a) + \alpha \ge Q^*(s, b)$, then $\mathcal{L}(s, a) \geq \mathcal{L}(s, b)$

Better!

No longer exponential in *#* states

Better!

No longer exponential in *#* states

(Still) exponential in $1/(1-\gamma)$

An Algorithm: Fair-E³

An Algorithm: Fair-E³

Start from E³ [KS98]

An Algorithm: Fair-E³

Start from E³ [KS98]

Adapt to satisfy approximate-action fairness

Organize world into "known" and "unknown" states

Organize world into "known" and "unknown" states

"Known": good estimates of transitions, rewards, Q* values . . .

In unknown state: take random walk → state more known

In known state:

In known state:

Either *fairly* exploit in known states for good reward

In known state:

Either *fairly* exploit in known states for good reward

Or fairly explore to unknown quickly

Approximate fairness makes everything trickier

Approximate fairness makes everything trickier

"Known" must be stronger

Approximate fairness makes everything trickier

"Known" must be stronger

Computing fair policies more delicate

Upper Bound

Upper Bound

Theorem: Fair-E³ is approximate action fair and near-optimal in poly(all MDP parameters but γ), exp(1/1- γ) steps

Collected Results

Collected Results

Without fairness: near-optimality in poly(MDP parameters)
Collected Results

Without fairness: near-optimality in poly(MDP parameters)

With fairness: exp(# states)

Collected Results

Without fairness: near-optimality in poly(MDP parameters)

With fairness: exp(# states)

With approximate fairness: exp(discount factor)

• Fair ML matters!

- Fair ML matters!
- Proposed meritocratic fairness, studied in RL setting

- Fair ML matters!
- Proposed meritocratic fairness, studied in RL setting
- Proved separations between "unfair", fair, and approximately fair RL

- Fair ML matters!
- Proposed meritocratic fairness, studied in RL setting
- Proved separations between "unfair", fair, and approximately fair RL
 Can we do better?

- Fair ML matters!
- Proposed meritocratic fairness, studied in RL setting
- Proved separations between "unfair", fair, and approximately fair RL
 Can we do better? Thanks!

Paper: arxiv.org/abs/1611.03071

References

[JKMR16] "Fairness in Learning: Classic and Contextual Bandits" Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. NIPS 2016

[KSO2] "Near-Optimal Reinforcement Learning in Polynomial Time" Michael Kearns and Satinder Singh. ICML 1998