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» Machine learning (ML) increasingly used to make critical
decisions, e.g. hiring and sentencing . T hyorid, angle | ndiduar singe
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» Problem: there are many examples of ML that is 2| maividual, separate |
discriminatory or unfair

» There is a large body of work on fair classification; we
instead focus on fair regression - T~
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label) should be treated similarly (similar predicted 2 nchicual, separate| | nchicual, separete
label) [Dwork et. al.] by introducing sample fairness |

penalties |
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> Each pair of similar examples classified dissimilarly adds Quantitative Measure of Trade-o

loss — no “cancellation”, most stringent fairness » Price of Fairness
requirement PoF () = min,, err(w) subject to f(w) < af(w®)
» Group Fairness penalty: B err(w*)

» The increment in error for any given fairness level of &« compared
to the best unfair predictor
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> Pairs of similar examples classified dissimilarly can be aaw Communities and Crime
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cancelled out by pairs classified dissimilarly in the — e — o
B |- ____|Hybrid, single B 5L [ Individual, single
opposite direction, least stringent fairness requirement
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» Hybrid Fairness: cancellation only among cross-pairs

within “buckets” — interpolates between individual and il N | | '
group fairness el mm | uln | |
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» Fairness loss minimized by constant predictors, but this : §
incurs bad accuracy loss o pefa ~ comeas
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The Optimization Problem

> Overall loss function to minimize is wnmmadd MM | g Hh‘lh
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» Accuracy loss + fairness loss + £2 regularizer
» Benefit: convex optimization problem => tractable LELCEWTENE

Summary of Datasets » Notion of fairness that's tractable to optimize

» [ he detailed trade-offs between fairness and accuracy and

Data Set Type Minority Protected different notions of fairness appear to be quite data-dependent

Adult logit 10771 gender and lack universals

Comm. & Crime linear 227 race _ _ _ _ _ _
COMPAS ogit 1455 e » Possibly consistent with emerging theoretical literature

Default ogit 11888  gender demonstrating the lack of a unified, comprehensive fairness
definition




