
Meritocratically Fair Algorithms for Infinite and
Contextual Bandits
M. Joseph, M. Kearns, J. Morgenstern, S. Neel, A. Roth

High-Level Motivation

I Machine learning can be unfair in many
ways: biased data; different populations
with different properties; less data
about minorities, etc.

I How do we define fair learning? What is
the performance cost of fairness?

Previous Work

I JKMR16 [1] studied fairness for finite
contextual bandits

I Problem 1: unrealistic assumptions
(one individual per group per day;
choose exactly one individual per day –
artificial inter-group competition?)

I Problem 2: results do not scale well
when number of arms is large

Finite Setting

I Goal: address Problem 1 above
I In each round t we see set Ct of at

most k contexts in Rd, choose a subset
Pt ⊂ Ct of exactly m contexts, and
observe noisy linear reward
rt

i = 〈β, xt
i〉+ εt

i for each i ∈ Pt

I Addresses problem 1: can see multiple
individuals per population per round,
can choose multiple individuals per
round

I Group membership can be encoded in
context in Rd or not

I Goal: maximize
∑

t

∑
i∈Pt

E[rt
i ],

measure performance by regret R(T)
=
∑

t[E[
∑

i∈P∗t
rt

i ]− E[
∑

j∈Pt
rt

j ]]
(loss from choosing subset Pt instead of
best expected subset P∗t across rounds)

I Models a program that
learns to grant loans by
granting m loans daily

General Fairness Definition

I Algorithm A is fair if (whp) for all
t ∈ T and for all i, j ∈ Ct

E[rt
i ] ≥ E[rt

j ]⇒ πt
i ≥ πt

j where
πt

i = P[choose i in round t]
(omitting histories for simple notation)

Interpreting Fairness Definition

I “Whp, never more likely to choose a
worse arm than a better arm”

I Optimal policies always play the
expected best arm and therefore are
fair. Challenge: how to learn the
optimal policy fairly?

A Fair Algorithm: RidgeFairm

RidgeFair5 would select

arms 1, 2, 3, and 4,

and also select one of

5, 6, and 7 at random.

I Uses confidence
intervals around
estimated means
to reason about
relative quality;
fairness forces
chaining

I In round t: Choose all arms in
highest connected component of
confidence intervals, then choose the
last arms by randomizing when you
reach a connected component in
which you cannot choose all arms

FairUCB [1] vs RidgeFairm

I Encoded in our setting (using
contexts in Rdk) FairUCB achieves
regret R(T) =
O(max[T4/5k6/5d3/5, k3])

I RidgeFairm achieves regret
R(T) = O(dk2

√
T)

I Improvement via better (and more
technical) confidence intervals for β̂
. Uses martingale matrix

concentration results from
APS11 [2]

Infinite Setting

I Goal: address Problem 2 above
I In each round t we see a convex set

Ct of choices contained in a ball of
radius r, select exactly one, and
observe (single) noisy reward
rt = 〈β, x〉+ εt

I Goal: maximize
∑

t E[rt], measure
performance by regret
R(T) =

∑
t E[r∗t − rt] where rt∗ is

an optimal choice in round t and rt is
the actual choice

A Fair Algorithm: FairGap

I Uses convexity of each Ct: optimal
point must be an extremal point

I Plays randomly until confidence interval
around β̂ shrinks enough to separate
optimal extremal point from suboptimal
extremal points

I Performance thus depends on ∆gap –
the “gap” in expected reward between
an optimal and next sub-optimal
extremal point

I Instance-dependent regret bound:

R(T) = Õ

(
r6R2

κ2λ2∆2
gap

)
where κ = 1− r

√
2

Tλ
and

λ = min1≤t≤T

[
λmin(Ext∼Ct[xt

Txt])
]

I Regret independent of k

Instance-dependent Lower Bound

I Thm: Let Ct = [−1, 1]d for each t
and choose some β ∈ [−1, 1]d. Then
for every ∆gap there exists an instance
distribution for which any fair algorithm
whp experiences Ω̃(1/∆gap) regret.
. Adapts Bayesian lower-bound

argument from JKMR16 [1]
I (Some) instance-dependence is

therefore necessary for any fair
algorithm in the infinite setting
. FairGap’s O(1/∆2

gap) regret is almost
tight

Instance-independent Lower Bound

I Thm: Let Ct be S1 (the unit circle) for
each t. Then for any β ∈ S1, no fair
algorithm achieves nontrivial regret.

I Consequence of ∆gap = 0 – continuity
means you can never actually identify
an optimal point
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