Meritocratically Fair Algorithms for Infinite and Contextual Bandits M. Joseph, M. Kearns, J. Morgenstern, S. Neel, A. Roth

- Machine learning can be unfair in many ways: biased data; different populations with different properties; less data about minorities, etc.
- ► How do we define *fair learning*? What is the performance cost of fairness?

Interpreting Fairness Definition

"Whp, never more likely to choose a worse arm than a better arm" Optimal policies always play the expected best arm and therefore are fair. Challenge: how to *learn* the optimal policy fairly?

A Fair Algorithm: FairGap

► Uses convexity of each **C**_t: optimal point must be an *extremal* point Plays randomly until confidence interval around $\hat{\beta}$ shrinks enough to separate optimal extremal point from suboptimal extremal points

 \blacktriangleright Performance thus depends on Δ_{gap} –

Previous Work

- ► JKMR16 [1] studied fairness for finite contextual bandits
- Problem 1: unrealistic assumptions (one individual per group per day; choose exactly one individual per day artificial inter-group competition?) **Problem 2**: results do not scale well when number of arms is large

Finite Setting

► Goal: address Problem 1 above \blacktriangleright In each round **t** we see set C_t of at most **k** contexts in \mathbb{R}^d , choose a subset $P_t \subset C_t$ of exactly **m** contexts, and observe noisy linear reward $\mathbf{r}_{i}^{t} = \langle \beta, \mathbf{x}_{i}^{t} \rangle + \epsilon_{i}^{t}$ for each $i \in \mathbf{P}_{t}$ ► Addresses problem 1: can see multiple individuals per population per round, can choose multiple individuals per round Group membership can be encoded in context in \mathbb{R}^d or not ► Goal: maximize $\sum_{t} \sum_{i \in P_{t}} \mathbb{E}[\mathbf{r}_{i}^{t}]$, measure performance by regret **R(T)** $= \sum_{\mathbf{t}} \left[\mathbb{E} \left[\sum_{i \in \mathsf{P}^*_{\mathsf{t}}} \mathsf{r}^{\mathsf{t}}_{i} \right] - \mathbb{E} \left[\sum_{j \in \mathsf{P}_{\mathsf{t}}} \mathsf{r}^{\mathsf{t}}_{j} \right] \right]$ (loss from choosing subset P_t instead of best expected subset P_{t}^{*} across rounds)

A Fair Algorithm: RidgeFairm

Uses confidence $\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4}$ intervals around $\int_{\frac{1}{6}} \frac{1}{4} = \int_{\frac{1}{6}} \frac{1}{4} = \frac{1}{4}$ to reason about • µ — Cl bounds relative quality; RidgeFair₅ would select arms 1, 2, 3, and 4, fairness forces and also select one of chaining 5, 6, and 7 at random. ► In round **t**: Choose all arms in highest connected component of confidence intervals, then choose the last arms by randomizing when you reach a connected component in which you cannot choose all arms

FairUCB [1] vs RidgeFair_m

- the "gap" in expected reward between an optimal and next sub-optimal extremal point
- Instance-dependent regret bound:

 $\mathbf{R}(\mathbf{T}) = \tilde{\mathbf{O}} \left(\frac{\mathbf{r}^{6} \mathbf{R}^{2}}{\kappa^{2} \lambda^{2} \Delta_{gan}^{2}} \right)$ where $\kappa = 1 - r \sqrt{\frac{2}{T\lambda}}$ and $\lambda = \min_{1 \le t \le T} \left[\lambda_{\min} (\mathbb{E}_{x_t \sim C_t} [x_t^T x_t]) \right]$ Regret independent of k

Instance-dependent Lower Bound

Thm: Let $C_t = [-1, 1]^d$ for each t and choose some $eta \in [-1,1]^d$. Then for every Δ_{gap} there exists an instance

Models a program that

- Encoded in our setting (using) contexts in \mathbb{R}^{dk}) FairUCB achieves regret R(T) = $O(\max[T^{4/5}k^{6/5}d^{3/5},k^3])$
- RidgeFairm achieves regret $R(T) = O(dk^2\sqrt{T})$
- Improvement via better (and more technical) confidence intervals for $\hat{\beta}$
 - ▷ Uses martingale matrix concentration results from APS11 [2]

Infinite Setting

► Goal: address Problem 2 above

- distribution for which any fair algorithm whp experiences $\hat{\Omega}(1/\Delta_{gap})$ regret. Adapts Bayesian lower-bound argument from JKMR16 [1] Some) instance-dependence is therefore necessary for any fair
 - algorithm in the infinite setting ▷ FairGap's $O(1/\Delta_{gap}^2)$ regret is almost tight

Instance-independent Lower Bound

Thm: Let C_t be S^1 (the unit circle) for each **t**. Then for any $\beta \in S^1$, no fair algorithm achieves nontrivial regret. $\blacktriangleright \text{ Consequence of } \Delta_{gap} = \mathbf{0} - \text{continuity}$

learns to grant loans by granting **m** loans daily

General Fairness Definition

 \blacktriangleright Algorithm \mathcal{A} is **fair** if (whp) for all $\mathbf{t} \in \mathbf{T}$ and for all $\mathbf{i}, \mathbf{j} \in \mathbf{C}_{\mathbf{t}}$ $\mathbb{E}[\mathbf{r}_{\mathbf{i}}^{\mathsf{t}}] \geq \mathbb{E}[\mathbf{r}_{\mathbf{i}}^{\mathsf{t}}] \Rightarrow \pi_{\mathbf{i}}^{\mathsf{t}} \geq \pi_{\mathbf{i}}^{\mathsf{t}}$ where $\pi_{i}^{t} = \mathbb{P}[\text{choose } i \text{ in round } t]$ (omitting histories for simple notation)

► In each round **t** we see a convex set **C**_t of choices contained in a ball of radius **r**, select exactly one, and observe (single) noisy reward $\mathbf{r}_{t} = \langle \beta, \mathbf{x} \rangle + \epsilon_{t}$ ► Goal: maximize $\sum_{t} \mathbb{E}[\mathbf{r}_{t}]$, measure performance by regret $R(T) = \sum_{t} \mathbb{E}[r_{t}^{*} - r_{t}]$ where r_{t}^{*} is an optimal choice in round \mathbf{t} and \mathbf{r}_{t} is the actual choice

means you can never actually identify an optimal point

References

[1] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning: Classic and contextual bandits.

In *NIPS 2016*.

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In *NIPS 2011*.